Enantio- and Diastereo-selective Synthesis of Spirocyclic Compounds

Hiroshi Suemune, ${ }^{*, a}$ Kazunori Maeda, ${ }^{a}$ Keisuke Kato ${ }^{\boldsymbol{a}}$ and Kiyoshi Sakai ${ }^{\text {*,b }}$
${ }^{a}$ Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812, Japan
${ }^{\text {b }}$ Kyushu Women's University, 1-1 Jiyugaoka, Yahatanishi-ku, Kitakyushu 807, Japan

Spirocyclic diones such as (R)-spiro[4.4]nonane-1,6-dione 1a, (R)-spiro[4.5]decane-1,6-dione 1b and (R)-spiro[5.5]undecane-1,7-dione 1c, and the corresponding cis,cis-diols 2a-c have been enantio- and diastereo-selectively synthesized by asymmetric alkylation and reduction using C_{2} symmetric cycloalkane-1,2-diols as a chiral auxiliary.

Optically active spirocyclic diones such as spiro[4.4]nonane-1,6-dione 1a, spiro[4.5]decane-1,6-dione 1b and spiro[5.5]-undecane-1,7-dione 1c are compounds of interest in the area of chiral homoconjugation. ${ }^{1}$ Furthermore, the corresponding cis,cis-diols $2 \mathbf{a}-\mathbf{c}^{2}$ are considered to be promising compounds as a new type of chiral auxiliary.

In an earlier paper, we reported a new method for preparing compounds containing a chiral quaternary carbon utilizing cycloalkane-1,2-diols as a chiral auxiliary. ${ }^{3}$ As a synthetic application of this asymmetric alkylation, we here report the synthesis of (R)-1a-cand ($1 R, 5 R, 6 R$)-spiro [4.4]nonane-1,6-diol 2a ($1 R, 5 R, 6 R$)-spiro $[4.5]$ decane-1,6-diol 2b and ($1 R, 6 R, 7 R$)-spiro[5.5]undecane-1,7-diol 2c, in a highly enantio- and dia-stereo-selective manner (Fig. 1).

Our proposed synthetic route to the target molecules is shown in Scheme 1. We planned to prepare the first synthetic intermediate \mathbf{A}, containing a quaternary carbon, by two types of asymmetric alkylation utilizing the chiral acetal 3 or the tricyclic lactone 5 along the lines of our earlier work. ${ }^{3}$ Dieckmann condensation of \mathbf{A} and subsequent dealkoxycarbonylation might then afford the second intermediate \mathbf{B}, removal of the acetal function from which should afford the diketones 1a-c. Furthermore, diastereoselective two-step reductions of \mathbf{B} would then, it was thought, afford the desired $c i s, c i s$-diols 2a-c. \dagger

Preparation of the Quaternary Carbon-containing Inter-mediate.-Asymmetric alkylation of the chiral acetal $\mathbf{3}$ derived from a 5 -membered β-keto ester and (R, R)-cycloheptane-1,2diol, with ethyl 4 -bromobutyrate and methyl 5 -bromopentanoate afforded the alkylated enol ethers $\mathbf{4 a}(90 \%)$ and $\mathbf{4 b}(77 \%)$, respectively, in a completely diastereoselective manner ($>99 \%$ d.e.). In contrast, a similar alkylation of the six-membered compound 10 with methyl 5-bromopentanoate afforded a complex mixture. This was thought to be the result of a competitive reaction; i.e., conversion of compound 10 into a tricyclic lactone (ent-5) under the basic conditions employed and subsequent alkylation occurred with reverse diastereoselectivity. This unwanted reaction was considered to be attributable to the slow rate of alkylation of $10 .{ }^{3 d}$ An alternative synthetic approach to the alkylated enol ether 7 was achieved in a two-step sequence, namely by alkylation of 5 to give $6(48 \%,>99 \%$ d.e.) and subsequent lactone ringopening of the latter with NaOMe to afford $7(84 \%)$. The d.e. of $\mathbf{4 a}, \mathbf{b}$ and 7 were determined by $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of $(+)-\mathrm{Eu}(\mathrm{hfc})_{3}$ after their conversion into the corresponding ketones $\mathbf{8 a}, \mathbf{b}$ and $\mathbf{9}$, respect-
\dagger In previous synthetic studies, for example, compound 1a and 2a were resolved by Gerlach ${ }^{4 a}$ and Shingu ${ }^{4 b}$ based on repeated recrystallization after conversion into a diastereoisomeric mixture of optically active camphanate derivatives.

(A)-1a

(A)-1b

(1R, 5R, 6R)-2c
Fig. 1

5
A

Scheme 1
ively. Based on our previous mechanistic consideration, ${ }^{3 c . d}$ the newly generated quaternary carbons were expected to have the absolute configuration depicted in Scheme 2. Absolute configurations of $\mathbf{4 a}, \mathbf{b}$ were finally confirmed by conversion into the configurationally known spirocyclic diketones 1a, \mathbf{b}, respectively.

Synthesis of Spirocyclic Diketones.-The enol ethers 4a, band 7 were easily converted into the corresponding acetals 11a, b and 14, respectively, by acid treatment in $87-95 \%$ yields. Subsequent Dieckmann condensation with lithium bis(trimeth-

4 a (90\%, >99\%d.e., $n=1, R=E t)$
4 b (77\%, >99\%d.e., $n=2, R=M e$)

$8 \mathrm{a}(98 \%, n=1, \mathrm{R}=\mathrm{Et})$ $8 \mathrm{~b}(70 \%, n=2, R=M e)$

10

Scheme 2
ylsilyl)amide in THF at room temperature successfully afforded the spirocyclic β-keto esters 12a, b and 15, respectively, in 90 94% yields as a mixture of diastereoisomers at the α-position of the ester function. Use of $\mathrm{Bu}^{\boldsymbol{t}} \mathrm{OK}$ instead of lithium bis(trimethylsilyl)amide gave compound 12a in 60% yield from 11a. Subsequent dealkoxycarbonylation of 12a, b and 15 with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous KOH in MeOH gave the corresponding keto acetals 13a, b and 16, respectively, in $86-92 \%$ yields (Scheme 3).
Deacetalization of the keto acetals 13a, band 16 was carefully studied, since competitive paths such as a retro-aldol reaction and Grob's type fragmentation were possible with these β-keto acetal systems in acidic media. Preliminary reactions were performed under the following conditions: (a) 3.5% aqueous HCl -acetone, room temp.; (b) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$-acetone, room temp.; (c) $\mathrm{ZnBr}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{THF}$, room temp. The behaviour of substrates under these conditions differed one from another and depended on the skeletal stability of each. Compound 13a with a spiro[4.4]nonane skeleton afforded the corresponding diketone 1a as a major product under conditions of (a)-(c) accompanied by several by-products(TLC). Of these conditions, (c) was found to be the best, affording the desired compound 1 a in 70% yield. Compound 16 with spiro[5.5]undecane skeleton gave 1c as a single product under conditions of (a)-(c). Reaction under (a) was fastest and afforded 1 c in 96% yield.
In contrast to the stability of 1 a and 1 c , compound 13 b with a spiro[4.5]decane skeleton afforded a complex mixture under the conditions of (a)-(c). Conditions (a) gave 1b in only 7% yield (Scheme 3). An alternative synthetic approach to prepare 1b from 13b was successful, proceeding via the hydroxy ketone 18b (details are given in the next section).

Synthesis of Spirocyclic cis,cis-Diols.-The enantio- and dia-stereo-selective synthesis of the cis,cis-diols $\mathbf{2 a - c}$ from the keto acetals 13a, b and 16 via the hydroxy ketones 18a-c was studied. For this purpose, a stepwise reduction was considered to be

11a (92\%, $n=1, R=E t)$
11b $(87 \%, n=2, R=M e)$
12a ($92 \%, n=1$)
12b ($94 \%, n=2$)

13a ($90 \%, n=1$) 13b ($92 \%, n=2$)

14 (95\%)

15 (90\%)

16 (86\%)

Scheme 3 i, p - TsOH ; ii, $(\mathrm{TMS})_{2} \mathrm{NLi}$; iii, $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$, MeOH ; iv, H^{+}; v, PPTS
favourable, since the r-face of the carbonyl function in 13a, \mathbf{b} and 16 was highly shielded by the acetal function. Therefore, reduction might preferentially take place from the less hindered si-face.*

Initially, the diastereoselectivity on reduction with LiAlH_{4} at $0^{\circ} \mathrm{C}$ was studied with the racemic substrates (\pm)-13a, b and (\pm)-16; they failed to give satisfactory results (the diastereoisomeric ratio was 1:1-5:1). Reduction of 13a, b with bulky DIBAL-H at $-78^{\circ} \mathrm{C}$ afforded the desired compounds $17 \mathrm{a}, \mathrm{b}$ of $>99 \%$ d.e. in 97 and 76% yields, respectively. Reduction of 16 with DIBAL-H at $-20^{\circ} \mathrm{C}$ failed to proceed, and that with LiAlH_{4} at $-50^{\circ} \mathrm{C}$ afforded 17 c of 96% d.e. in 94% yield. Deacetalization of $17 \mathbf{a}-\mathbf{c}$ was achieved with 3.5% aqueous $\mathrm{HCl}-$

[^0]

Table 1 Chemical shifts of hydroxy protons (δ)

18a	3.44	$(\pm)-19 a$	2.29
18b	3.78	$(\pm)-19 b$	in $1.22-2.41$
$18 \mathbf{c}$	3.21	$(\pm)-19 \mathbf{c}$	2.41

17a (98\%, >99\% d.e., $n=1$) 17b (85\%, >99\% d.e., $n=2$)

17c (96\%, 96\% d.e.)

Scheme 4

acetone at room temperature, affording the hydroxy ketones 18a-c in quantitative yields. A small amount of 19 c in 18 c could be removed by silica-gel column chromatography.

The diastereoisomeric excess of 17 was determined from the isolated yields of 18 and 19. The stereochemistry of compounds 18a-c was determined by comparing the chemical shifts of the hydroxy proton in their ${ }^{1} \mathrm{H}$ NMR spectra with those of (\pm)-19; they could be divided into two types as shown in Table 1. One group observed at lower chemical shifts ($\delta 3.21-3.78$) was assigned to the compound of cis configuration, 18, because of the likely presence of intramolecular hydrogen bonding with the carbonyl function. The other group observed at higher chemical shifts ($\delta 2.29-2.41$) was assigned to the compound of trans configuration, 19.

One of the target molecules $\mathbf{1 b}$ was easily synthesized by neutral oxidation of $\mathbf{1 8 b}$ with $\mathrm{RuO}_{2}-\mathrm{NaIO}_{4}$ in 77% yield.

In the attempted preparation of cis, cis-diols, direct reduction of the hydroxy ketone 18 failed to give a satisfactory result. For example, DIBAL-H reduction of 18 a at $-60^{\circ} \mathrm{C}$ afforded a $1: 2$ mixture of the cis,cis-diol 2a and the cis,trans-diol (22a type) in 77% yield. Next, we planned the following sequence of reactions: (i) protection of the hydroxy group as a bulky tertbutyldiphenylsilyl ether; (ii) si-face selective reduction of the carbonyl function; (iii) deprotection of the silyl ether. The TBDPS ethers 20a-c were obtained in 78-95\% yields from 18a\mathbf{c} by the usual procedure. As expected, reduction of 20a-c with DIBAL-H at $-78^{\circ} \mathrm{C}$ proceeded in a highly si-face selective manner to afford $21 \mathrm{a}-\mathrm{c}$ with a cis,cis-configuration. In the case of the reduction of 20a, cis,cis-21a was obtained in 85% yield accompanied with diastereoisomeric 22a in 9\% yield; these were easily separated by silica-gel column chromatography. The same reduction of 20b, c gave cis,cis-21b, c in 70 and 67% yields, respectively, in a completely diastereoselective manner. Deprotection of the TBDPS ether in 21a-c with tetrabutylammonium fluoride (TBAF) quantitatively afforded the corresponding diols $2 \mathrm{a}-\mathrm{c}$ ($97-99 \%$ yields). The stereochemistry of the reduction was deduced in a similar manner to that described for the hydroxy ketones 18 and 19. That is to say, in the 270 MHz ${ }^{1} \mathrm{H}$ NMR spectra, the hydroxy protons of 21a-c were observed at lower chemical shifts ($\delta 3.95-4.65$), a result, perhaps, of intramolecular hydrogen bonding with the ether oxygen. The structures of compounds 21a, c were also determined by comparing their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra with those of 2a, c, in which C_{2}-symmetrical properties were observed. For example, the ${ }^{13} \mathrm{C}$ NMR spectrum of 2 a showed $\mathrm{C}-1,-6$ at $\delta 79.6$ (3°), C-2, $-7, \mathrm{C}-3-8, \mathrm{C}-4,-9$ at $\delta 34.3,33.9,21.2$ (each 2°), and

quaternary $\mathrm{C}-5$ at δ 58.3. In its ${ }^{1} \mathrm{H}$ NMR spectrum, $2-\mathrm{H}$ and $6-\mathrm{H}$ were observed as an equivalent signal at $\delta 4.14$.

Thus, three types of spirocyclic skeleton have been enantioand diastereo-selectively synthesized by a procedure which may provide a general method for the asymmetric synthesis of spirocyclic and related compounds.

Experimental

IR spectra were measured with a JASCO A-202 spectrometer and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-GX-270 or JEOL JNM-FX-100 spectrometer. Mass spectra (MS) were taken on a JEOL JMS-D 300 spectrometer. Optical rotations were measured on a JASCO DIP-360 polarimeter at the sodium line; values are recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. For column chromatography, silica gel (Merck, Kieselgel 60, 70-230 mesh) was used.

General Procedure for Asymmetric Alkylation of the Acetal 3.-A solution of $\mathrm{BuLi}\left(15 \%\right.$ hexane solution; $\left.5 \mathrm{~cm}^{3}, 8 \mathrm{mmol}\right)$ was added dropwise to a stirred solution of diisopropylamine ($808 \mathrm{mg}, 8 \mathrm{mmol}$) in THF ($25 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under an Ar atmosphere. After 10 min , HMPA ($3.6 \mathrm{~g}, 20 \mathrm{mmol}$) in THF $\left(3 \mathrm{~cm}^{3}\right)$ and substrate $3^{3 d}(1.02 \mathrm{~g}, 4 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ were added to the mixture which was then stirred for 10 min ; alkyl halide (4 mmol) in THF $\left(3 \mathrm{~cm}^{3}\right)$ was then added to it. After being stirred for 1 h at $-78^{\circ} \mathrm{C}$ and for additional 24 h at $-40^{\circ} \mathrm{C}$, the reaction mixture was diluted with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ethyl acetate. The extracts were washed with brine, dried (MgSO_{4}), and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. The fraction eluted with hexane-ethyl acetate (20:1-10:1) afforded 4a, b as colourless oils.

Methyl (1S)-1-(3-ethoxycarbonylpropyl)-2-[(1R,2R)-2-hydroxycycloheptyl] oxycyclopent-2-enecarboxylate 4a: 90% yield; $>99 \%$ d.e. $[\alpha]_{\mathrm{D}}^{23}-48.3$ (c 1.2 in CHCl_{3}); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1}$ $3500(\mathrm{OH}), 1738 \mathrm{br}(\mathrm{C}=\mathrm{O})$ and 1650 (double bond); $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.56(1 \mathrm{H}, \mathrm{t}, J 3), 4.12(2 \mathrm{H}, \mathrm{q}, J 7), 3.77-3.61(2 \mathrm{H}$, $\mathrm{m}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.48(1 \mathrm{H}, \mathrm{br}$ s), 2.39-2.26(5 H, m), 2.01-1.83 $(4 \mathrm{H}, \mathrm{m}), 1.77-1.45(11 \mathrm{H}, \mathrm{m})$ and $1.26(3 \mathrm{H}, \mathrm{t}, J 7) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.9(\mathrm{~s}), 173.3(\mathrm{~s}), 156.5(\mathrm{~s}), 97.2(\mathrm{~d}), 86.7(\mathrm{~d}), 75.5$
(d), 60.2 (t), 57.7 (s), 52.1 (q), 34.7 (t$), 34.5(\mathrm{t}), 32.5(\mathrm{t}), 31.5(\mathrm{t})$, $28.4(\mathrm{t}), 27.3(\mathrm{t}), 26.4(\mathrm{t}), 22.3(\mathrm{t}), 22.2(\mathrm{t}), 20.1(\mathrm{t})$ and $14.3(\mathrm{q})$; $m / z 368\left(\mathrm{M}^{+}, 17 \%\right), 267(14), 254$ (11) and 167 (100).

Methyl (1S)-1-(3-methoxycarbonylbutyl)-2-[(1R,2R)-2-hydroxycycloheptyloxy]cyclopent-2-enecarboxylate 4 b : 77% yield; $>99 \%$ d.e. $[\alpha]_{\mathrm{D}}^{22}-50.5$ (c 0.5 in CHCl_{3}); $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3500(\mathrm{OH}), 1740 \mathrm{br}(\mathrm{C}=\mathrm{O})$ and 1650 (double bond); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.54(1 \mathrm{H}, \mathrm{t}, J 3), 3.75-3.60(2 \mathrm{H}, \mathrm{m})$, $3.69(3 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.37-2.21(5 \mathrm{H}, \mathrm{m})$ and 1.96-1.18 ($17 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.1$ (s), $174.0(\mathrm{~s})$, 156.7 (s), 97.1 (d), 86.6 (d), 75.7 (d), 57.9 (s), 52.1 (q), 51.4 (q), $34.9(\mathrm{t}), 33.9(\mathrm{t}), 32.5(\mathrm{t}), 31.5(\mathrm{t}), 28.4(\mathrm{t}), 27.3(\mathrm{t}), 26.4(\mathrm{t}), 25.3(\mathrm{t})$, $24.0(\mathrm{t}), 22.4$ (t) and 22.2 (t$) ; m / z(\mathrm{EI}) 368\left(\mathrm{M}^{+}, 19 \%\right.$), 267 (22) and 167 (100).
(3S,8S,11S)-11-(4-Methoxycarbonylbutyl)-2,9-dioxatricyclo[9.4.0.0 ${ }^{3,8}$]pentadec-1(15)-en-10-one 6.-A solution of BuLi (15% hexane solution; $4.8 \mathrm{~cm}^{3}, 7.7 \mathrm{mmol}$) was added dropwise to a stirred solution of diisopropylamine ($778 \mathrm{mg}, 7.7 \mathrm{mmol}$) in THF ($35 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under an Ar atmosphere. After 10 min , HMPA ($12.5 \mathrm{~g}, 70 \mathrm{mmol})$ and the lactone $5^{3 c}(1.55 \mathrm{~g}, 7 \mathrm{mmol})$ in THF ($5 \mathrm{~cm}^{3}$) were added to the mixture which was then stirred for 10 min ; methyl 5 -bromovalerate ($1.5 \mathrm{~g}, 7.7 \mathrm{mmol}$) in THF $\left(3 \mathrm{~cm}^{3}\right)$ was then added to it. After being stirred for 1 h at $-78^{\circ} \mathrm{C}$ and for an additional 24 h at $-40^{\circ} \mathrm{C}$, the reaction mixture was diluted with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ethyl acetate. The extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel. The fraction eluted with hexaneethyl acetate ($10: 1$) afforded the title compound $6(1.13 \mathrm{~g}, 48 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{27}+17.7$ (c 0.3 in CHCl_{3}); $\nu_{\max }($ neat $) / \mathrm{cm}^{-1} 1730 \mathrm{br}(\mathrm{C}=\mathrm{O})$ and 1665 (double bond); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.37(1 \mathrm{H}, \mathrm{t}, J 3), 4.43(1 \mathrm{H}, \mathrm{m}), 3.89$ $(1 \mathrm{H}, \mathrm{m}), 3.65(3 \mathrm{H}, \mathrm{s}), 2.34-2.28(2 \mathrm{H}, \mathrm{m})$ and 2.17-1.15 $(20 \mathrm{H}$, $\mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.9$ (s), 174.0 (s), 149.2 (s), 116.7 (d), 81.6 (d), 76.9 (d), 51.4 (s$), 51.4(\mathrm{q}), 39.9$ (t), 33.9 (t), $33.5(\mathrm{t})$, $31.2(t), 31.2(t), 25.4(t), 24.6(t), 23.6(t), 23.6(t), 23.5(t)$ and 18.5 (t); m / z (EI) 336 (${ }^{+}, 6.3 \%$), 308 (89), 150 (86), 141 (100); $m / z 336.1930\left(\mathrm{M}^{+} ;\right.$Calc. for $\left.\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}: 336.1937\right)$.

Methyl(1S)-2-[(1S,2S)-2-Hydroxycyclohexyloxy]-1-(4-meth-oxycarbonylbutyl)cyclohex-2-enecarboxylate 7.-To a solution of NaOMe prepared from $\mathrm{Na}(230 \mathrm{mg}, 10 \mathrm{mmol})$ in MeOH ($30 \mathrm{~cm}^{3}$) was added compound $6(1 \mathrm{~g}, 3 \mathrm{mmol})$ under an Ar atmosphere. The mixture was stirred at room temperature for 1 h and then diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$, and extracted with ethyl acetate. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography. The fraction eluted with hexane-ethyl acetate ($7: 1$) afforded $7\left(920 \mathrm{mg}, 84 \%\right.$) as a colourless oil; $[\alpha]_{\mathrm{D}}^{26}-6.5$ (c 0.7 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3540(\mathrm{OH}), 1730 \mathrm{br}(\mathrm{C}=\mathrm{O})$ and 1665 (double bond); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.89(1 \mathrm{H}, \mathrm{t}, J$ 4), $3.74(1 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{m}), 2.53$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.36-2.30(2 \mathrm{H}, \mathrm{m})$ and 2.21-1.03 $(20 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 176.2 (s), 174.2 (s), 151.8 (s), 98.1 (d), 79.2 (d), 73.1 (d), 51.7 (q), $51.5(\mathrm{q}), 50.4$ (s$), 34.7(\mathrm{t}), 33.8(\mathrm{t}), 32.2(\mathrm{t}), 32.2$ (t), 28.0(t), 25.4 (t), 24.2 (t), 23.9 (t), $23.9(t), 23.7(t), 19.5(t)$; m / z (EI) $368\left(\mathrm{M}^{+}, 24 \%\right), 210(20)$ and 156 (100).

General Procedure for Deprotection of the Enol Ethers 4a, b and 7.-To a mixture of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left(0.5 \mathrm{~cm}^{3}, 4 \mathrm{mmol}\right)$ and water $\left(0.5 \mathrm{~cm}^{3}\right)$ was added a solution of the enol ether $(0.2 \mathrm{mmol})$ in $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$ at room temp. The reaction mixture was heated at $60-70^{\circ} \mathrm{C}$ for $0.5-3 \mathrm{~h}$ and then diluted with saturated aqueous $\mathrm{NaCl}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate. The extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated
under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography. The fractions eluted with 30:1-10:1 hexane-ethyl acetate afforded 8a, b and 9 as colourless oils.

Methyl (R)-1-(3-ethoxycarbonylpropyl)-2-oxocyclopentanecarboxylate 8a: 90% yield; $[\alpha]_{\mathrm{D}}^{27}-25.3$ (c 0.2 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} \quad 1750-1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $4.12(2 \mathrm{H}, \mathrm{q}, J 7), 3.71(3 \mathrm{H}, \mathrm{s}), 2.62-2.28(4 \mathrm{H}, \mathrm{m}), 2.05-1.89(4 \mathrm{H}$, m), $1.71-1.52(4 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{t}, J 7) ; m / z(\mathrm{EI}) 256\left(\mathrm{M}^{+}, 4 \%\right)$, 228 (44), 224 (28) and 142 (100).
Methyl (S)-1-(4-methoxycarbonylbutyl)-2-oxocyclopentanecarboxylate 8b: 70% yield; $[\alpha]_{\mathrm{D}}^{30}-20.2^{\circ}$ (c 1.0 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} \quad 1740-1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $3.70(3 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 2.57-2.19(5 \mathrm{H}, \mathrm{m}), 2.05-1.83(4 \mathrm{H}, \mathrm{m})$, $1.68-1.51(3 \mathrm{H}, \mathrm{m})$ and $1.42-1.20(2 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{EI}) 256\left(\mathrm{M}^{+}\right.$, 9%), 224 (10) and 142 (100).
Methyl (R)-1-(4-methoxycarbonylbutyl)-2-oxocyclohexanecarboxylate 9: 85% yield; $[\alpha]_{\mathrm{D}}^{24}+76.2$ (c 0.62 in CHCl_{3}); $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} \quad 1740-1710(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $3.73(3 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 2.53-2.41(3 \mathrm{H}, \mathrm{m}), 2.31(2 \mathrm{H}, \mathrm{m}), 2.03-$ $1.16(11 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 270\left(\mathrm{M}^{+}, 2 \%\right), 239(20)$ and 156 (100).

General Procedure for Conversion of the Enol Ethers 4a, band 7 into the Acetals 11a, \mathbf{b} and 14.-To a solution of the enol ether ($368 \mathrm{mg}, 1 \mathrm{mmol}$) in benzene ($15 \mathrm{~cm}^{3}$) was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($38 \mathrm{mg}, 0.2 \mathrm{mmol}$). The resulting mixture was refluxed with azeotropic removal of water for 0.5 h after which the reaction was quenched with $\mathrm{NaHCO}_{3}(504 \mathrm{mg}, 6 \mathrm{mmol})$ and aqueous saturated $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. The whole was extracted with ethyl acetate. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography. The fractions eluted with hexane-ethyl acetate ($30: 1$) afforded the acetals as colourless oils.

Methyl 2'-(3-ethoxycarbonylpropyl)spiro[(3aR,8aR)-hexa-hydrocyclohepta-1,3-dioxole-2, 1^{\prime}-($2^{\prime} \mathrm{R}$)-cyclopentane $]-2^{\prime}$-carboxylate 11a: 92% yield; $[\alpha]_{\mathrm{D}}^{23}-32.6$ (c 0.8 in CHCl_{3}); $\nu_{\max }($ neat $) / \mathrm{cm}^{-1} 1730 \mathrm{br}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.11(2 \mathrm{H}$, $\mathrm{q}, J 7$), $3.77(1 \mathrm{H}, \mathrm{m}), 3.68(3 \mathrm{H}, \mathrm{s}), 3.59(1 \mathrm{H}, \mathrm{m}), 2.45-2.27(3 \mathrm{H}$, $\mathrm{m}), 2.21-2.03(3 \mathrm{H}, \mathrm{m}), 2.0-1.73(3 \mathrm{H}, \mathrm{m}), 1.72-1.45(13 \mathrm{H}, \mathrm{m})$ and $1.25(3 \mathrm{H}, \mathrm{t}, J 7) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.0(\mathrm{~s}), 173.4$ (s), 118.1 (s), 81.6 (d), 81.3 (d), 60.2 (t), 59.1 (s), 55.1 (q), 37.7 (t), 34.7 (t$), 32.9$ (t$), 31.0$ (t$), 30.3(\mathrm{t}), 28.8(\mathrm{t}), 25.2(\mathrm{t}), 25.0(\mathrm{t})$, 24.9 (t), $21.0(\mathrm{t}), 19.7$ (t) and 14.3 (q); $m / z(\mathrm{EI}) 368\left(\mathrm{M}^{+}, 19 \%\right)$, 267 (18) and 167 (100).

Methyl 2'-(4-methoxycarbonylbutyl)spiro[(3aR,8aR)-hexa-hydrocyclohepta-1,3-dioxole-2,1'-(2'S)-cyclopentane]-2'-carb-
oxylate 11b: 87% yield; $[\alpha]_{\mathrm{D}}^{20}-24.9$ (c 1.0 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1740 \mathrm{br}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.76-3.52$ ($2 \mathrm{H}, \mathrm{m}$), $3.67(3 \mathrm{H}, \mathrm{s})$, $3.66(3 \mathrm{H}, \mathrm{s}), 2.39-2.27(3 \mathrm{H}, \mathrm{m})$ and 2.18-1.02 ($21 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.2$ (s), $174.0(\mathrm{~s})$, 118.0 (s), 81.6 (d), 81.3 (d), 59.1 (s), 51.4 (q), 51.4 (q), 37.5 (t), 33.9 (t), 32.9 (t), $31.0(\mathrm{t}), 30.3$ (t), 29.7 (t), 28.8 (t$), 25.4(\mathrm{t}), 25.2$ (t), $25.0(\mathrm{t}), 24.9$ (t) and 19.6 (t); m / z (EI) 368 ($\mathrm{M}^{+}, 19.4 \%$), 267 (23) and 167 (100).

Methyl $\quad 2^{\prime}-(4-m e t h o x y c a r b o n y l b u t y l)$ spiro [(3aS,7aS)-hexa-hydro-1,3-benzodioxole-2,1'-(2'R)-cyclopentane]-2'-carboxylate 14: 95% yield; $[\alpha]_{\mathrm{D}}^{26}-4.6$ ($c 0.75$ in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1740 \mathrm{br}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.68(3 \mathrm{H}, \mathrm{s}), 3.65(3 \mathrm{H}$, s), $3.29(1 \mathrm{H}, \mathrm{m}), 3.15(1 \mathrm{H}, \mathrm{m}), 2.34-2.28(2 \mathrm{H}, \mathrm{m}), 2.20-1.99$ $(4 \mathrm{H}, \mathrm{m})$ and 1.78-1.01 $(18 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.7$ (s), 174.0 (s), 111.1 (s), 80.5 (d), 79.6 (d), 54.9 (s), $51.6(\mathrm{q}), 51.4(\mathrm{q})$, $33.8(\mathrm{t}), 33.1(\mathrm{t}), 30.5(\mathrm{t}), 29.7(\mathrm{t}), 28.8(\mathrm{t}), 28.8(\mathrm{t}), 25.3(\mathrm{t}), 24.0(\mathrm{t})$, $23.8(\mathrm{t}), 23.8(\mathrm{t}), 23.1$ (t) and 20.3 (t); m / z (EI) 368 ($\mathrm{M}^{+}, 19.0 \%$) and 156 (100).

General Procedure for Dieckmann Condensation of 11a, b and 14.-A solution of lithium bis(trimethylsilyl)amide ($1 \mathrm{~mol} \mathrm{dm}^{-3}$

THF solution; $5.4 \mathrm{~cm}^{3}, 5.4 \mathrm{mmol}$) was added dropwise to a stirred solution of the substrate (2.7 mmol) in THF $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under an Ar atmosphere. After being stirred for 1 h at room temp., the reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ethyl acetate. The extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel. The fraction eluted with hexane-ethyl acetate ($30: 1-20: 1$) afforded 12a, b and 15 as colourless oils.

Ethyl 2"-oxodispiro [(3aR,8aR)-hexahydrocyclohepta-1,3-di-oxole- $2,1^{\prime}$-cyclopentane $-2^{\prime}, 1^{\prime \prime}$-($\left.1^{\prime \prime} \mathrm{S}, 3^{\prime \prime} \mathrm{RS}\right)$-cyclopentane $]-3^{\prime \prime}-$
carboxylate 12a: 91% yield; $[\alpha]_{D}^{27}+57.1$ (c 1.7 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1750(\mathrm{C}=0), 1730(\mathrm{C}=\mathrm{O}), 1655$ and 1620 ; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.25(2 \mathrm{H}, \mathrm{m}), 3.66(2 \mathrm{H}, \mathrm{m}), 3.33-3.21$ $(1 \mathrm{H}, \mathrm{m}), 2.39-2.03(8 \mathrm{H}, \mathrm{m}), 1.99-1.46(12 \mathrm{H}, \mathrm{m})$ and $1.28(3 \mathrm{H}$, $\mathrm{t}, J 7$); m / z (EI) $336\left(\mathrm{M}^{+}, 7 \%\right), 178$ (16) and 167 (100).

Methyl $2^{\prime \prime}$-oxodispiro $[(3 \mathrm{aR}, 8 \mathrm{aR})$-hexahydrocyclohepta-1,3dioxole $-2,1^{\prime}$-cyclopentane $-2^{\prime}, 1^{\prime \prime}$ - $\left(1^{\prime \prime} \mathrm{R}, 3^{\prime \prime} \mathrm{RS}\right)$ cyclohexane $]-3^{\prime \prime}$ carboxylate 12b: 94% yield; $[\alpha]_{\mathrm{D}}^{25}+78.6$ (c 1.1 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1740(\mathrm{C}=0), 1700(\mathrm{C}=0), 1645$ and 1610 ; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.94-3.57(3 \mathrm{H}, \mathrm{m}), 3.75,3.74$ (total 3 H , s each, ratio 2:3) and 2.50-1.19 ($22 \mathrm{H}, \mathrm{m}$); m/z (EI) $336\left(\mathrm{M}^{+}\right.$, 16%), 192 (27) and 167 (100).

Methyl 2"-oxodispiro[(3aS,7aS)-hexahydro-1,3-benzodioxole-$2,1^{\prime}$-cyclohexane- $2^{\prime}, 1^{\prime \prime}$-($1^{\prime \prime} \mathrm{S}$)-cyclohexane $]-3^{\prime \prime}$-carboxylate 15 : 94% yield; $[\alpha]_{\mathrm{D}}^{25}+78.6$ (c 1.1 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1740(\mathrm{C}=\mathrm{O}), 1700(\mathrm{C}=\mathrm{O}), 1640$ and $1605 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; CDCl_{3}) 4.01, 3.61 (total 1 H , dd each, $J 11,7$ and $J 13,7$, ratio 3:2), 3.74, 3.73 (total 3 H , seach), 3.42-3.10 ($2 \mathrm{H}, \mathrm{m}$) and $2.35-$ $1.14(22 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{EI}) 336\left(\mathrm{M}^{+}, 70 \%\right), 206(100)$ and 178 (98).

General Procedure for the Dealkoxycarbonylation of the β Keto Esters 12a, band 15.-To a mixture of $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{KOH}\left(12 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeOH}\left(30 \mathrm{~cm}^{3}\right)$ was added a solution of substrate (5 mmol) in $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ at room temperature. The reaction mixture was refluxed for 3 h and then diluted with brine ($20 \mathrm{~cm}^{3}$), and extracted with ethyl acetate. The extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography. The fraction eluted with $30: 1$ hexane-ethyl acetate afforded 13a, b and 16 as colourless oils.

Dispiro [(3aR,8aR)-hexahydrocyclohepta-1,3-dioxole- $2,1^{\prime}$ -cyclopentane- $2^{\prime}, 1^{\prime \prime}$-($11^{\prime \prime} \mathrm{R}$)-cyclopentan $]$ - $2^{\prime \prime}$-one 13a: 90% yield; $[\alpha]_{\mathrm{D}}^{25}+63.3$ (c 0.4 in CHCl_{3}); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.73(1 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{m}), 2.45-2.05$ $(6 \mathrm{H}, \mathrm{m}), 2.0-1.70(6 \mathrm{H}, \mathrm{m})$ and $1.69-1.45(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 220.3 (s), 117.9 (s), 81.6 (d), 80.0 (d), 59.9 (s), 38.8 (t), $36.1(\mathrm{t}), 33.3(\mathrm{t}), 32.1(\mathrm{t}), 30.4(\mathrm{t}), 28.7(\mathrm{t}), 25.2(\mathrm{t}), 25.0(\mathrm{t}), 25.0$ (t), 19.6 (t) and 19.4 (t); $m / z(E I) 264\left(\mathrm{M}^{+}, 19 \%\right), 168$ (13) and 167 (100).

Dispiro [(3aR,8aR)-hexahydrocyclohepta-1,3-dioxole-2,1'-cyclopentane- $2^{\prime}, 1^{\prime \prime}-\left(1^{\prime \prime} \mathrm{R}\right)$-cyclohexan $]-2^{\prime \prime}$-one 13b: 90% yield; $[\alpha]_{\mathrm{D}}^{24}+61.1$ (c 1.1 in CHCl_{3}); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.82-3.63(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{m}), 2.43-$ $2.09(5 \mathrm{H}, \mathrm{m})$ and $2.02-1.23(18 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 212.7 (s), 117.4 (s), 81.0 (d), 80.1 (d), 59.8 (s), 41.7 (t), 36.6 (t), $34.4(\mathrm{t}), 33.9(\mathrm{t}), 30.8(\mathrm{t}), 28.7(\mathrm{t}), 26.9(\mathrm{t}), 25.1(\mathrm{t}), 25.1(\mathrm{t}), 25.1(\mathrm{t})$, $22.5(\mathrm{t})$, and $18.9(\mathrm{t}) ; m / z(\mathrm{EI}) 278\left(\mathrm{M}^{+}, 11 \%\right)$ and 167 (100).

Dispiro [(3aS,7aS)-hexahydro-1,3-benzodioxole-2,1'-cyclo-hexane- $2^{\prime}, 1^{\prime \prime}$-($1^{\prime \prime R}$)-cyclohexan]-2"-one 16: 86% yield; $[\alpha]_{\mathrm{D}}^{26}$ +6.1 (c 0.54 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1705(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.39(1 \mathrm{H}, \mathrm{m}), 3.14(1 \mathrm{H}, \mathrm{m}), 2.42(2 \mathrm{H}, \mathrm{m}), 2.29-$ $2.02(4 \mathrm{H}, \mathrm{m})$ and $2.02-1.23(18 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 213.2 (s), 110.8 (s), 81.1 (d), 79.7 (d), 57.4 (s), 40.4 (t), 33.6 (t), $33.5(\mathrm{t}), 32.9(\mathrm{t}), 29.9(\mathrm{t}), 28.7(\mathrm{t}), 27.1(\mathrm{t}), 23.9(\mathrm{t}), 23.8(\mathrm{t}), 22.9(\mathrm{t})$, $21.4(\mathrm{t})$ and $20.6(\mathrm{t}) ; m / z(\mathrm{EI}) 278\left(\mathrm{M}^{+}, 48 \%\right), 180(61)$ and 152 (100).
(R)-Spiro[4.4]nonane-1,6-dione 1a.-To a suspended mixture of ZnBr_{2} ($171 \mathrm{mg}, 0.76 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}\left(100: 1 ; 5 \mathrm{~cm}^{3}\right.$) was added a solution of $13 \mathrm{a}(100 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(1 \mathrm{~cm}^{3}\right)$ at room temperature. The reaction mixture was stirred for 24 h , after which $\mathrm{ZnBr}_{2}(85.5 \mathrm{mg}, 0.38 \mathrm{mmol})$ was added to it. After being stirred for an additional 24 h , the reaction mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, and extracted with ethyl acetate. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford an oily residue, which was then purified by silica gel column chromatography. The fraction eluted with $30: 1$ hexane-ethyl acetate afforded 1a ($40 \mathrm{mg}, 70 \%$) as colourless needles, m.p. $65^{\circ} \mathrm{C}$ (methanol); $[\alpha]_{\mathrm{D}}^{26}+133$ (c 0.3 in cyclohexane) $\left\{\right.$ lit., ${ }^{4 a}$ for (S)-1a: $[\alpha]_{\mathrm{D}}^{26}-135$ (c 0.5 in cyclohexane) $\}$; $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 1739(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.48-2.33(4 \mathrm{H}, \mathrm{m})$, 2.32-2.19 (4 H, m), 2.17-1.78 (4 H, m); $\delta_{\mathrm{C}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 216.7 (s), $64.4(\mathrm{~s}), 38.5(\mathrm{t}), 34.3(\mathrm{t})$ and $19.8(\mathrm{t}) ; m / z(\mathrm{EI}) 152\left(\mathrm{M}^{+}\right.$, 28%) and 97 (100); m/z $152.0830\left(\mathrm{M}^{+}\right.$; Calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ 152.0837).
(R)-Spiro[5.5]undecane-1,7-dione 1c.-To a solution of $\mathbf{1 6}$ ($151 \mathrm{mg}, 0.54 \mathrm{mmol}$) in acetone ($3 \mathrm{~cm}^{3}$) was added 3.5% aqueous $\mathrm{HCl}\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temp. for 2 h , after which it was diluted with brine $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography. The fraction eluted with $30: 1$ hexane-ethyl acetate afforded 1c ($94 \mathrm{mg}, 96 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}^{27}+114$ (c 0.3 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathbf{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 2.56-2.36 (6 H, m), 1.98-1.66 (8 H, m) and 1.60-1.43 ($2 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 210.8(\mathrm{~s}), 64.5(\mathrm{~s}), 40.8(\mathrm{t}), 36.2(\mathrm{t}), 27.7$ (t) and $21.3(\mathrm{t}) ; m / z(\mathrm{EI}) 180\left(\mathrm{M}^{+}, 100 \%\right), 152(77) ; m / z 180.1140$ $\left(\mathrm{M}^{+} ;\right.$Calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ 180.1150).

General Procedure for DIBAL-H Reduction of the Keto Acetals 13a, b. -To a solution of 13a, $\mathbf{b}(1 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ was added DIBAL-H ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $2 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 3 h at -70 to $-60^{\circ} \mathrm{C}$. Work-up of the mixture and purification of the residue by silica gel column chromatography ($30: 1$ hexane-ethyl acetate) afforded 17a, b as colourless oils.

Dispiro [(3aR,8aR)-hexahydrocyclohepta-1,3-dioxole-2,1'-cyclopentane- $2^{\prime}, 1^{\prime \prime}-\left(1^{\prime \prime} \mathrm{R}, 2^{\prime \prime} \mathrm{R}\right)$-cyclopentan $]-2^{\prime \prime}$-ol $17 \mathrm{a}: 98 \%$ yield; $[\alpha]_{\mathrm{D}}^{22}-33.0$ (c 1.1 in CHCl_{3}); $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3500(\mathrm{OH}) ;$ $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.38(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.98(1 \mathrm{H}, \mathrm{d}, J 3)$, 3.83-3.71 ($2 \mathrm{H}, \mathrm{m}$), 2.24-2.14 ($2 \mathrm{H}, \mathrm{m}$), 2.11-1.77 $(5 \mathrm{H}, \mathrm{m})$ and 1.73-1.43 ($15 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 118.9$ (s), 82.0 (d), 79.7 (d), 78.9 (d), 56.8 (s), 36.1 (t), 34.6 (t$), 33.1$ (t$), 30.5$ (t), 29.8 (t), 28.7 (t), 25.2 (t), 24.9 (t$), 24.9$ (t$), 20.2(\mathrm{t})$ and $18.4(\mathrm{t}) ; \mathrm{m} / \mathrm{z}$ (EI) $266\left(\mathrm{M}^{+}, 14 \%\right), 248$ (17) and $95(100)$.

Dispiro [(3aR,8aR)-hexahydrocyclohepta-1,3-dioxole-2,1'-cyclopentane- $2,1^{\prime \prime}-\left(1^{\prime \prime} \mathrm{R}, 2^{\prime \prime} \mathrm{R}\right)$-cyclohexan $]-2^{\prime \prime}$-ol 17 b : 86% yield; $[\alpha]_{\mathrm{D}}^{23}-50.9$ (c 1.45 in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3500(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.17(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.91(1 \mathrm{H}, \mathrm{dd}, J 2,1)$, 3.82-3.69 ($2 \mathrm{H}, \mathrm{m}$), 2.21-2.12 ($2 \mathrm{H}, \mathrm{m}$) and 1.99-1.22 ($22 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 119.9$ (s), 81.7 (d), 80.2 (d), 70.7 (d), 48.3 (s), $34.4(\mathrm{t}), 31.1$ (t$), 30.5(\mathrm{t}), 29.1(\mathrm{t}), 28.7(\mathrm{t}), 25.3(\mathrm{t}), 25.1(\mathrm{t}), 24.9$ (t), 24.9 (t), 22.2 (t), 19.5 (t) and 17.7 (t); $m / z(E I) 280\left(\mathrm{M}^{+}, 25 \%\right.$), 262 (16) and 167 (100).

Dispiro [(3aS,7aS)-hexahydro-1,3-benzodioxole-2,1'-cyclo-hexane- $2,1^{\prime \prime}-\left(1^{\prime \prime} \mathrm{R}, 2^{\prime \prime} \mathrm{R}\right)$-cyclohexan $]-2^{\prime \prime}$-ol 17 c .-To a suspended solution of $\mathrm{LiAlH}_{4}(152 \mathrm{mg}, 4 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of $16(278 \mathrm{mg}, 1 \mathrm{mmol})$ in THF $\left(3 \mathrm{~cm}^{3}\right)$ at $-50^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h , after which the reaction was quenched by the addition of ethyl acetate $\left(1 \mathrm{~cm}^{3}\right)$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(0.2 \mathrm{~cm}^{3}\right)$ to the
mixture; the resulting precipitate was filtered off. The filtrate was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography. The fraction eluted with $30: 1$ hexane-ethyl acetate afforded $17 \mathrm{c}(263 \mathrm{mg}, 94 \%$) of 96% d.e. as a colourless oil; $[\alpha]_{\mathrm{D}}^{27}+9.0$ (c 0.62 in CHCl_{3}); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3480$ $(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.26(1 \mathrm{H}, \mathrm{s}), 4.13(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $3.39(1 \mathrm{H}, \mathrm{m}), 3.23(1 \mathrm{H}, \mathrm{m}), 2.15-2.03(3 \mathrm{H}, \mathrm{m})$ and $1.96-1.17$ $(21 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 113.8$ (s), 81.0 (d), 79.9 (d), 68.7 (d), 44.1 (s$), 32.3(\mathrm{t}), 31.1(\mathrm{t}), 29.7(\mathrm{t}), 28.5(\mathrm{t}), 27.8(\mathrm{t}), 24.9$ (t), $23.8(\mathrm{t}), 23.8(\mathrm{t}), 23.1(\mathrm{t}), 20.2(\mathrm{t}), 19.9(\mathrm{t})$ and $19.1(\mathrm{t})$; m / z (EI) $280\left(\mathrm{M}^{+}, 36 \%\right), 262$ (7) and 164 (100).

General Procedure for the Deacetalization of 17a-c.-To a solution of $17 \mathrm{a}-\mathrm{c}(1 \mathrm{mmol})$ in THF $\left(3 \mathrm{~cm}^{3}\right)$ was added $3.5 \% \mathrm{HCl}$ $\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred for 0.5 h at room temp. and then diluted with saturated aqueous $\mathrm{NaCl}\left(10 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography to afford the hydroxy ketones 18a-c as colourless oils.
(5R,6R)-6-Hydroxyspiro[4.4]nonan-1-one 18a: 98\% yield; $[\alpha]_{\mathrm{D}}^{22}+47.7$ (c 2.0 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{OH})$ and $1725(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.00(1 \mathrm{H}, \mathrm{dd}, J 4,3)$, $3.44(1 \mathrm{H}, \mathrm{d}, J 4, \mathrm{OH}), 2.39-2.27(2 \mathrm{H}, \mathrm{m}), 2.08-1.75(8 \mathrm{H}, \mathrm{m})$ and $1.74-1.57(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 225.1(\mathrm{~s}), 80.5(\mathrm{~d})$, $58.9(\mathrm{~s}), 39.0(\mathrm{t}), 35.7(\mathrm{t}), 34.5(\mathrm{t}), 33.9(\mathrm{t}), 21.4(\mathrm{t})$ and $19.3(\mathrm{t})$; m / z (EI) $154\left(\mathrm{M}^{+}, 28 \%\right), 136(25)$ and 97 (100); $m / z 154.0987$ ($\mathrm{M}^{+} ;$Calc. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ 154.0994).
(5R,6R)-6-Hydroxyspiro[4.5]decan-1-one 18b: 88% yield; $[\alpha]_{\mathrm{D}}^{23}+24.4$ (c 2.0 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{OH})$ and $1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 3.78(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.68$ (1 H , dd, $J 3,2$), 2.45-2.00 ($2 \mathrm{H}, \mathrm{m}$), 2.08-1.56 ($8 \mathrm{H}, \mathrm{m}$) and $1.49-$ $1.25(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 225.9$ (s), 71.0 (d), 51.8 (s), $38.5(\mathrm{t}), 32.8(\mathrm{t}), 29.0(\mathrm{t}), 27.1(\mathrm{t}), 20.9(\mathrm{t}), 19.8(\mathrm{t})$ and $18.8(\mathrm{t})$; m / z (EI) $168\left(\mathrm{M}^{+}, 36 \%\right), 150(61)$ and 97 (100); $m / z 168.1142$ ($\mathrm{M}^{+} ;$Calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} 168.1150$).
(6R,7R)-7-Hydroxyspiro[5.5]undecan-1-one 18c: 94% yield; $[\alpha]_{\mathrm{D}}^{26}-59.8$ (c 0.62 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3470(\mathrm{OH})$ and $1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.42(1 \mathrm{H}, \mathrm{m}), 3.21$ $(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{OH}), 2.57(1 \mathrm{H}, \mathrm{m}), 2.28-2.17(2 \mathrm{H}, \mathrm{m})$ and $2.08-1.14$ ($13 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 219.6 (s), 74.2 (d), 53.7 (s), $39.4(\mathrm{t}), 36.2(\mathrm{t}), 30.9(\mathrm{t}), 30.1(\mathrm{t}), 28.3(\mathrm{t}), 22.6(\mathrm{t}), 21.3(\mathrm{t})$ and 20.4 (t); m / z (EI) $182\left(\mathrm{M}^{+}, 29 \%\right), 164$ (64) and 111 (100); m/z $182.1301\left(\mathrm{M}^{+}\right.$, Calc. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ 182.1307).
(R)-Spiro[4.5]decane-1,6-dione 1b.-To a mixture of 18b ($220 \mathrm{mg}, 1.31 \mathrm{mmol}$), $\mathrm{CCl}_{4}\left(1.5 \mathrm{~cm}^{3}\right), \mathrm{MeCN}\left(1.5 \mathrm{~cm}^{3}\right)$ and water ($2.5 \mathrm{~cm}^{3}$) was added $\mathrm{RuO}_{2}(5 \mathrm{mg}, 0.03 \mathrm{mmol})$ and NaIO_{4} $(400 \mathrm{mg}, 1.87 \mathrm{mmol})$ at room temperature. After being stirred for 24 h , the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography. The fraction eluted with $10: 1$ hexane-ethyl acetate afforded $\mathbf{1 b}(167 \mathrm{mg}, 77 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{23}+198\left(c 0.4\right.$ in $\left.\mathrm{CHCl}_{3}\right)\left\{\right.$ lit., ${ }^{4 c}[\alpha]_{\mathrm{D}}+185(c 0.4$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right\} ; \quad v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} \quad 1740(\mathrm{C}=\mathrm{O})$ and 1700 (CO); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.75-2.63(2 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}, \mathrm{m}), 2.34$ $2.28(2 \mathrm{H}, \mathrm{m})$ and $2.19-1.53(9 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $215.6(\mathrm{~s}), 208.0(\mathrm{~s}), 64.4(\mathrm{~s}), 39.8(\mathrm{t}), 38.6$ (t), $36.0(\mathrm{t}), 33.8(\mathrm{t}), 26.7$ (t), 21.1 (t) and 19.1 (t); m / z (EI) $166\left(\mathrm{M}^{+}, 60 \%\right.$), 138 (29) and 111 (100); $m / z 166.0988\left(\mathrm{M}^{+}\right.$; Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ 166.0994).

General Procedure for TBDPS Protection of 18a-c.-To a mixture of $18(1 \mathrm{mmol})$ and imidazole ($272 \mathrm{mg}, 4 \mathrm{mmol}$) was added a solution of tert-butyl(chloro)diphenylsilane (550 mg , 2 mmol) in DMF ($2 \mathrm{~cm}^{3}$) at room temperature. After being
stirred for 48 h , the reaction mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, and extracted with ethyl acetate. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography. The fraction eluted with $50: 1$ hexane-ethyl acetate afforded 20 as a colourless oil.
(5R,6R)-6-tert-Butyldiphenylsiloxyspiro[4.4]nonan-1-one 20a: 95% yield; $[\alpha]_{\mathrm{D}}^{23}-14.6$ (c 2.1 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1740(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77-7.65(4 \mathrm{H}, \mathrm{m}), 7.45-7.35$ $(6 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{t}, J 6), 2.31-2.15(2 \mathrm{H}, \mathrm{m}), 2.12-1.92(3 \mathrm{H}$, $\mathrm{m}), 1.89-1.72(4 \mathrm{H}, \mathrm{m}), 1.57-1.23(3 \mathrm{H}, \mathrm{m})$ and $1.02(9 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 220.5$ (s), 135.9 (d), 134.2 (s), 133.6 (s), 129.7 (d), 129.6 (d), 127.6 (d), 127.4 (d), 83.1 (d), 58.8 (s), 39.0 (t), $36.8(\mathrm{t}), 33.9(\mathrm{t}), 33.1(\mathrm{t}), 26.9(\mathrm{q}), 21.0(\mathrm{t}), 19.6(\mathrm{t})$ and 19.2 (s); m / z (EI) $392\left(\mathrm{M}^{+}, 0.1 \%\right)$ and $335\left[\mathrm{M}^{+}-\mathrm{C}(\mathrm{Me})_{3}, 100\right]$.
(5R,6R)-6-tert-Butyldiphenylsiloxyspiro[4.5]decan-1-one 20b: 88% yield; $[\alpha]_{\mathrm{D}}^{25}+0.14$ (c 2.0 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1735(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.72-7.64(4 \mathrm{H}, \mathrm{m}), 7.46-$ $7.32(6 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}$, dd, $J 11,5), 2.53(1 \mathrm{H}, \mathrm{m}), 2.31-0.88$ ($13 \mathrm{H}, \mathrm{m}$) and $1.01(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 220.6$ (s), 135.9 (d), 134.7 (s), 133.5 (s), 129.6 (d), 129.3 (d), 127.6 (d), 127.2 (d), 76.5 (d), $52.5(\mathrm{~s}), 40.7(\mathrm{t}), 36.2(\mathrm{t}), 32.9(\mathrm{t}), 30.5(\mathrm{t}), 27.1(\mathrm{q})$, 24.0 (t), 20.7 (t), 19.4 (s) and 19.0 (t); m / z (EI) 406 (${ }^{+}, 0.08 \%$), 350 (31) and $349\left[\mathrm{M}^{+}-\mathrm{C}(\mathrm{Me})_{3}, 100\right]$.
($6 \mathrm{R}, 7 \mathrm{R}$)-7-tert-Butyldiphenylsiloxyspiro[5.5]undecan-1-one 20c: 78% yield; $[\alpha]_{D}^{29}-6.2$ (c 2.0 in CHCl_{3}); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ $1700(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.70-7.63(4 \mathrm{H}, \mathrm{m}), 7.46-$ $7.32(6 \mathrm{H}, \mathrm{m}), 4.10(1 \mathrm{H}, \mathrm{m}), 2.35-2.24(2 \mathrm{H}, \mathrm{m}), 2.11-0.85(14 \mathrm{H}$, $\mathrm{m})$ and $1.02(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 213.9(\mathrm{~s})$, 136.1 (d), 135.7 (s), 134.7 (s), 129.6 (d), 129.5 (d), 127.5 (d), 127.2 (d), 73.3 (d), $53.4(\mathrm{~s}), 39.4(\mathrm{t}), 36.1(\mathrm{t}), 29.5(\mathrm{t}), 28.9(\mathrm{t}), 27.8(\mathrm{t}), 27.0$ (q), 21.1 (t), 20.7 (t), 20.4 (t) and 19.3 (s); Ms m / z (EI) 363 $\left[\mathrm{M}^{+}-\mathrm{C}(\mathrm{Me})_{3}, 100\right]$ and 279 (55).

Diastereoselective Reduction of $\mathbf{2 0}$ to 21.-Compounds 20 were reduced with DIBAL-H at $-60^{\circ} \mathrm{C}$ in a manner similar to that described for the preparation of 18.
(1R,5R,6R)-6-tert-Butyldiphenylsiloxyspiro[4.4]nonan-1-ol 21a: 85% yield; $[\alpha]_{\mathrm{D}}^{25}-34.8\left(c 0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ $3500(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.75-7.65(4 \mathrm{H}, \mathrm{m}), 7.48-7.38$ ($6 \mathrm{H}, \mathrm{m}$), $4.21(1 \mathrm{H}, \mathrm{d}, J 4), 4.17(1 \mathrm{H}, \mathrm{t}, J 5), 3.95(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, 1.89-1.80 ($2 \mathrm{H}, \mathrm{m}$), 1.74-1.49 ($6 \mathrm{H}, \mathrm{m}$), $1.45-1.15(4 \mathrm{H}, \mathrm{m})$ and $1.07(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.9$ (d), $134.0(\mathrm{~s}), 133.0(\mathrm{~s})$, 129.9 (d), 129.8 (d), 127.8 (d), 127.6 (d), 81.8 (d), 78.9 (d), 58.0 (s), 33.9 (t), 33.1 (t), 32.9 (t), 32.9 (t), 27.0 (q), 21.0 (t), 19.9 (t) and $19.0(\mathrm{~s}) ; m / z(\mathrm{EI}) 393\left(\mathrm{M}^{+}-1,0.05 \%\right), 376(0.1), 337$ (16) and 121 (100).
(1S,5R,6R)-6-tert-Butyldiphenylsiloxyspiro[4.4]nonan-1-ol 22a: 9% yield; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3500(\mathrm{OH}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.78-7.70(4 \mathrm{H}, \mathrm{m}), 7.47-7.35(6 \mathrm{H}, \mathrm{m}), 4.36(1 \mathrm{H}, \mathrm{t}, J 7)$, $3.79(1 \mathrm{H}, \mathrm{s}), 2.78(1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{OH}), 2.26(1 \mathrm{H}, \mathrm{m}), 1.96-1.74(2 \mathrm{H}$, $\mathrm{m}), 1.72-1.53(3 \mathrm{H}, \mathrm{m}), 1.48-1.38(4 \mathrm{H}, \mathrm{m}), 1.37-1.19(2 \mathrm{H}, \mathrm{m})$ and $1.07(9 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{EI}) 394\left(\mathrm{M}^{+}, 0.02 \%\right), 393\left(\mathrm{M}^{+}-1\right.$, 0.04%), 376 (0.8), 337 (16), 199 (100) and 121 (98).
(1R,5R,6R)-6-tert-Butyldiphenylsiloxyspiro[4.5]decan-1-ol 21b: 70% yield; $[\alpha]_{\mathrm{D}}^{26}-20.3$ (c 1.53 in CHCl_{3}); $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3480(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.74-7.65$ $(4 \mathrm{H}, \mathrm{m}), 7.50-7.34(6 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{s}), 4.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $3.72(1 \mathrm{H}, \mathrm{dd}, J 9,3), 2.04(1 \mathrm{H}, \mathrm{m}), 1.92-1.01(12 \mathrm{H}, \mathrm{m}), 1.08$ $(9 \mathrm{H}, \mathrm{s})$ and $0.92(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 136.0(\mathrm{~d})$, 133.9 (s), 132.7 (s), 130.1 (d), 129.7 (d), 127.8 (d), 127.5 (d), 78.0 (d) 77.8 (d), 51.4 (s), 34.0 (t), 33.7 (t), 32.7 (t), 32.2 (t), 27.1 (q), $23.6(\mathrm{t}), 21.8(\mathrm{t}), 20.9(\mathrm{t})$ and $19.4(\mathrm{~s}) ; m / z(\mathrm{FD}) 409\left(\mathrm{M}^{+}+1\right.$, 7.0%), $352\left[\mathrm{M}^{+}-\mathrm{C}(\mathrm{Me})_{3}, 40\right]$ and 351 (100).
(1R,6R,7R)-7-tert-Butyldiphenylsiloxyspiro[5.5]undecan-1-ol 21c: 67% yield; $[\alpha]_{\mathrm{D}}^{28}-23.6$ (c 1.0 in CHCl_{3}); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 3550(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.75-7.66(4 \mathrm{H}, \mathrm{m})$, 7.49-7.35 ($6 \mathrm{H}, \mathrm{m}$), $4.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.42$
(1 H, dd, J 10, 4), 2.37-2.24 (1 H, m), 2.06-0.84 (14 H, m), 1.08 $(9 \mathrm{H}, \mathrm{s})$ and $0.78(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 136.1$ (d), 136.0 (d), 133.9 (s), 132.3 (s), 130.0 (d), 129.7 (d), 127.7 (d), 127.4 (d), 82.2 (d), 68.9 (d), 40.5 (s), 31.9 (t), 30.6 (t), 30.1 (t), 28.4 (t), 27.1 (q), 24.3 (t), 20.6 (t), 20.2 (t), 19.8 (t) and 19.4 (s); m / z (FD) $365\left[\mathrm{M}^{+}-\mathrm{C}(\mathrm{Me})_{3}, 26\right], 199(87)$ and 149 (100).

General Procedure for the Deprotection of 21.-To a solution of $21(1 \mathrm{mmol})$ in THF ($2 \mathrm{~cm}^{3}$) was added tetrabutylammonium fluoride ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $2 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$). The mixture was stirred at room temp. for 2 h after which it was diluted with brine $\left(4 \mathrm{~cm}^{3}\right)$, and extracted with ethyl acetate. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to afford an oily residue, which was purified by silica gel column chromatography. The fraction eluted with $3: 1$ hexaneethyl acetate afforded 2 as a colourless oil.
(1R,5R,6R)-Spiro[4.4]nonane-1,6-diol 2a: 99% yield; $[\alpha]_{D}^{26}$ -100.7 (c 1.2 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3350(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.14(2 \mathrm{H}, \mathrm{dd}, J 5,3), 2.73(2 \mathrm{H}$, br s), $1.98-1.81(4 \mathrm{H}, \mathrm{m}), 1.73-1.58(6 \mathrm{H}, \mathrm{m})$ and $1.38-1.25(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 79.6(\mathrm{~d}), 58.3(\mathrm{~s}), 34.3(\mathrm{t}), 33.9(\mathrm{t})$ and $21.2(\mathrm{t}) ; m / z(\mathrm{EI}) 156\left(\mathrm{M}^{+}, 0.05 \%\right), 154(0.1), 138(1.5)$ and 94 (100); $m / z 156.1142\left(\mathrm{M}^{+}\right.$; Calc. for $\left.\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} 156.1150\right)$.
(1R,5R,6R)-Spiro[4.5]decane-1,6-diol 2b: 99% yield; $[\alpha]_{\mathrm{D}}^{22}$ $-65.5\left(c 1.6\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3400(\mathrm{OH}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.02(1 \mathrm{H}, \mathrm{dd}, J 5,2), 3.84(1 \mathrm{H}, \mathrm{dd}, J 5,3), 2.67$ (2 H , br s) and $2.00-1.05(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 80.6$ (d), $72.9(\mathrm{~d}), 49.6(\mathrm{~s}), 33.6(\mathrm{t}), 32.6(\mathrm{t}), 31.1(\mathrm{t}), 22.2(\mathrm{t}), 21.6(\mathrm{t})$ and $21.4(\mathrm{t}) ; m / z(\mathrm{EI}) 170\left(\mathrm{M}^{+}, 1 \%\right), 168(7), 152(10), 134(98)$ and $108(100) ; m / z 170.1314\left(\mathrm{M}^{+} ;\right.$Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$ 170.1307).
(1R,6R,7R)-Spiro[5.5]undecane-1,7-diol 2c: 88% yield; $[\alpha]_{\mathrm{D}}^{28}$ $-44.6\left(c \quad 0.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3320(\mathrm{OH}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.87(2 \mathrm{H}, \mathrm{d}, J 6), 2.93(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.17-1.96(2 \mathrm{H}$, $\mathrm{m})$, 1.76-1.57 (8 H, m), 1.49-1.37 (4 H, m) and 1.12-1.03 (2 H, $\mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 74.1(\mathrm{~d}), 39.8(\mathrm{~s}), 30.7(\mathrm{t}), 29.5(\mathrm{t})$, $22.0(\mathrm{t})$ and $20.5(\mathrm{t}) ; m / z(\mathrm{EI}) 185\left(\mathrm{M}^{+}+1,16 \%\right), 184\left(\mathrm{M}^{+}\right.$, 14%) and 166 (100); $m / z 184.1455\left(\mathrm{M}^{+}\right.$; Calc. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$ 184.1463).

References

1 D. A. Lightner, G. D. Christiansen and J. L. Melquist, Tetrahedron Lett., 1972, 2045.
2 N. Srivastava, A. Mital and A. Kumar, J. Chem. Soc., Chem. Commun., 1992, 493.
3 (a) K. Kato, H. Suemune and K. Sakai, Tetrahedron Lett., 1992, 33, 247; (b) K. Kato, H. Suemune and K. Sakai, Tetrahedron Lett., 1992, 33, 3481; (c) K. Kato, H. Suemune and K. Sakai, Heterocycles, 1994, 37, 413; (d) K. Kato, H. Suemune and K. Sakai, Tetrahedron, 1994, 50, 3315.
4 (a) H. Gerlach, Helv. Chim. Acta, 1968, 51, 1587; (b) H. Kuritani, F. Iwata, M. Sumiyoshi and K. Shingu, J. Chem. Soc., Chem. Commun., 1977, 542.
5 E. Hardegger, E. Maeder, H. M. Semarne and D. J. Cram, J. Am. Chem. Soc., 1959, 81, 2729.
6 J. A. Nieman, M. Parvez and B. A. Keay, Tetrahedron: Asymmetry, 1993, 4, 1973, and references cited therein.

Paper 4/04009K
Received 4th July 1994
Accepted 18th July 1994

[^0]: * According to Cram et al. ${ }^{5}$ reduction of (\pm)-1a with LiAlH_{4} afforded a mixture of cis,cis-, cis,trans- and trans,trans-diols in a low diastereoselective manner. Recently, Keay ${ }^{6}$ et al. have reported highly diastereoselective reduction of (\pm)-1a to (\pm)-2a using lithium tertbutyldiisobutylaluminium hydride and subsequent resolution using (+)-camphor.

